

6911 Southpoint Drive (B03) Burnaby, BC V3N 4X8

July 30, 2024



### RE: CEAP IR 30 - Mt Puggins Wind Energy Centre Project - Interconnection Feasibility Study Report

Enclosed is the Interconnection Feasibility study report for the proposed Mt Puggins Wind Energy Centre Project submitted under Attachment M-2: Transmission Service and Interconnection Service Procedures for Competitive Electricity Acquisition Process (CEAP) of the Open Access Transmission Tariff (OATT). This letter provides a non-binding good faith estimate of the cost and time to construct the facilities required to interconnect your project to BC Hydro's Transmission System, being the Network Upgrades, based on the findings of the Interconnection Feasibility study.

#### **Open Access Transmission Tariff**

The OATT defines Network Upgrades as additions, modifications, and upgrades to BC Hydro's Transmission System required at or beyond the Point of Interconnection to accommodate the interconnection of the Generating Facility to the BC Hydro's Transmission System. Pursuant to the OATT, BC Hydro will design, procure, construct, install, and own the Network Upgrades. While BC Hydro will pay the costs for the Network Upgrades, the Interconnection Customer provides security for such costs.

#### **Cost Estimate**

Based on the Interconnection Feasibility study, the non-binding good faith estimated cost (typical accuracy range of +150%/-50%) for Network Upgrades required to interconnect your project is \$80.4 M.

#### Major Scope of Work Identified:

- Acquire adequate property for a new switching station close to the existing transmission line 2L329
- Construct a new outdoor 230kV, 3- circuit breaker ring bus switching substation
- Construct a new control building and other required substation facilities and infrastructures
- Supply and install protection relays and other required protection equipment
- Supply and install required telecommunication equipment

#### **Exclusions:**

- GST
- Right-of-way
- Permits

#### **Key Assumptions:**

- Construction by contractor
- 3 years of construction
- No expansion of existing stations or control buildings to accommodate new equipment
- Early Engineering and Procurement
- No ground improvements will be required
- No piles will be required for construction
- No contaminated soil will be encountered during construction

#### **Key Risks:**

- Additional right of way or acquisition of more property may be required
- No defined supply chain strategy, construction costs may increase depending on delivery method
- Cost of construction may increase based on geotechnical condition of the actual project site
- Project schedule may be longer than expected, leading to increase costs
- Costs may be affected by market conditions and escalation

Please note that the Revenue Metering requirements and associated costs required to interconnect your project have not been determined at this stage and, therefore, not included in the above estimate. Revenue Metering costs that are attributable to the Interconnection Customer are to be paid in cash. For more details on Revenue Metering requirements and responsibilities, please refer to:

https://www.bchydro.com/content/dam/BCHydro/customer-portal/documents/distribution/standards/ds-rmr-complex-revenue-metering.pdf.

#### **Schedule**

Based on the Interconnection Feasibility study, the non-binding good faith estimated in-service date for your project's Network Upgrades is Quarter 3 2031 (calendar year). To achieve this timeline, we may need to expedite certain activities, including engineering design and procurement of long-lead equipment.

Timely actions required from you to minimize risks to the schedule:

- Submission of additional technical data required for the System Impact Study and Facilities Study
- Submission of any required information or document such as demonstration of Site Control
- Execution of Combined Study Agreement and Standard Generator Interconnection Agreement
- Financial commitments and securities

Please note that changes to your interconnection request, delays in data submission, or financial commitments may also impact the target in-service date.

### **Next Steps**

In September 2024, we will issue a final invoice for the Feasibility Study costs. This invoice will reflect the total amount due, taking into account the \$15,000 Feasibility Study deposit you have already paid and any remaining amount on the non-refundable \$15,000 Interconnection request deposit that we did not spend in reviewing and validating your interconnection request.

If you have any questions, please contact the BC Hydro CEAP Team at ceap2024@bchydro.com. Sincerely,



Senior Manager, Transmission Interconnections

BC Hydro

Encl.: CEAP2024\_IR\_30\_Mt Puggins Wind Energy Centre\_FeS\_Report\_final.pdf

# Mt Puggins Wind Energy Centre

# **Interconnection Feasibility Study**

BC Hydro EGBC Permit to Practice No: 1002449

2024 CEAP IR # 30

Prepared for:



# **Report Metadata**

Header: Mt Puggins Wind Energy Centre
Subheader: Interconnection Feasibility Study
Title: Mt Puggins Wind Energy Centre

1 of 1

Subtitle: 2024 CEAP IR # 30 Report Number: 1000-APR-00019

Revision: 0

Confidentiality: Public

Date: 2024 Jul 30

Volume:

Related Facilities: 2L329

Additional Metadata: Transmission Planning 2024-051

Filing Subcode 1350



| Revision | Date     | Description     |  |
|----------|----------|-----------------|--|
| 0        | 2024 Jul | Initial release |  |

### Disclaimer of Warranty, Limitation of Liability

This report was prepared solely for internal purposes. All parties other than BC Hydro are third parties.

BC Hydro does not represent, guarantee or warrant to any third party, either expressly or by implication:

any information, product or process disclosed, described or recommended in this report.

BC Hydro does not accept any liability of any kind arising in any way out of the use by a third party of any information, product or process disclosed, described or recommended in this report, nor does BC Hydro accept any liability arising out of reliance by a third party upon any information, statements or recommendations contained in this report. Should third parties use or rely on any information, product or process disclosed, described or recommended in this report, they do so entirely at their own risk.

This report was prepared by the British Columbia Hydro And Power Authority ("BCH") or, as the case may be, on behalf of BCH by persons or entities including, without limitation, persons or entities who are or were employees, agents, consultants, contractors, subcontractors, professional advisers or representatives of, or to, BCH (individually and collectively, "BCH Personnel").

This report is to be read in the context of the methodology, procedures and techniques used, BCH's or BCH's Personnel's assumptions, and the circumstances and constraints under which BCH's mandate to prepare this report was performed. This report is written solely for the purpose expressly stated in this report, and for the sole and exclusive benefit of the person or entity who directly engaged BCH to prepare this report. Accordingly, this report is suitable only for such purpose, and is subject to any changes arising after the date of this report. This report is meant to be read as a whole, and accordingly no section or part of it should be read or relied upon out of context.

Unless otherwise expressly agreed by BCH:

- (a) any assumption, data or information (whether embodied in tangible or electronic form) supplied by, or gathered from, any source (including, without limitation, any consultant, contractor or subcontractor, testing laboratory and equipment suppliers, etc.) upon which BCH's opinion or conclusion as set out in this report is based (individually and collectively, "Information") has not been verified by BCH or BCH's Personnel; BCH makes no representation as to its accuracy or completeness and disclaims all liability with respect to the Information:
- (b) except as expressly set out in this report, all terms, conditions, warranties, representations and statements (whether express, implied, written, oral, collateral, statutory or otherwise) are excluded to the maximum extent permitted by law and, to the extent they cannot be excluded, BCH disclaims all liability in relation to them to the maximum extent permitted by law;
- (c) BCH does not represent or warrant the accuracy, completeness, merchantability, fitness for purpose or usefulness of this report, or any information contained in this report, for use or consideration by any person or entity. In addition, BCH does not accept any liability arising out of reliance by a person or entity on this report, or any information contained in this report, or for any errors or omissions in this report. Any use, reliance or publication by any person or entity of this report or any part of it is at their own risk; and
- (d) In no event will BCH or BCH's Personnel be liable to any recipient of this report for any damage, loss, cost, expense, injury or other liability that arises out of or in connection with this report including, without limitation, any indirect, special, incidental, punitive or consequential loss, liability or damage of any kind.

## Copyright Notice

Copyright and all other intellectual property rights in, and to, this report are the property of, and are expressly reserved to, BCH. Without the prior written approval of BCH, no part of this report may be reproduced, used or distributed in any manner or form whatsoever.

## **Executive Summary**

the interconnection customer (IC), requests to interconnect its Mt. Puggins Wind Project (2024 CEAP IR 30) to the BC Hydro system. Mt. Puggins Wind has seventeen (17) 6.2 MW type-4 wind turbine generators, adding a total capacity of 105.4 MW with a maximum power injection of 100 MW into the BC Hydro system at the POI. The Point of Interconnection (POI) is on BC Hydro's 230 kV line 2L329, approx. 24 km from Bear Mountain Terminal (BMT). The IC's project will connect to the POI via a 50 km 230 kV line. The IC's proposed commercial operation date (COD) is Oct 1st, 2030.

To interconnect the Mt Puggins Wind Energy Centre and its facilities to the BCH Transmission System at the proposed POI, this Feasibility Study has identified the following conclusions and requirements:

- 1. A new 230 kV switching station (referred to as "P30T") on 2L329 is required at the proposed POI for interconnecting the IC's generating project to the BCH system. With the new switching station P30T, 2L329 will be segregated into three new lines, temporarily referred to as: 2L329\_A (SGB-P30T), 2L329\_B (P30T-BMT) and 2L329\_C (P30T-P30). The temporary line designations will be replaced by permanent designations at a later stage of interconnection study.
- 2. The connection of Mt Puggins Wind does not cause any performance violation (i.e. thermal overload, voltage performance violation or voltage stability concern) under system normal conditions.
- 3. The study does not find any new thermal or voltage performance violation attributed to the new IC's project based on single contingency analysis.
- 4. Mt Puggins Wind may be islanded with other generations and BC Hydro loads after certain contingencies which may result in unacceptable overvoltages. Mt Puggins Wind may be required to be immediately tripped off through a direct transfer trip (DTT) scheme to mitigate the impact caused by the contingencies. Subsequent further study by Analytical Studies will be performed to confirm the requirement at a later stage of the project. A list of contingencies is provided in Section 5.1.4. In addition, as a backup the IC is required to install anti-islanding protection within their facility to



disconnect the wind farm when an inadvertent island with the local load forms.

- 5. Part of the existing fibre optic cable running between BMT and SGB along the 2L329/2L333 transmission support structures will need to be rerouted/terminated through the new switching station P30T. It requires either modification of the existing OPGW cable on transmission line 2L329/2L323 structure or 5.5km new fibre line.
- 6. BC Hydro will provide line protection relays for 2L329\_A, 2L329\_B and 2L329\_C (BC Hydro end only) at P30T. The IC shall provide entrance protection, required relays for 2L329\_C, telecom facility, and associated equipment at its facilities to accommodate the protection requirement.

The above conclusions are made based on the IC's input data and study assumptions listed in Section 4, which represent the best available information on May 22, 2024.

A non-binding good faith estimated cost and time to construct the Network Upgrades required to interconnect the proposed project will be provided in a separate letter to the IC.

# **Contents**

| Ex | ecuti                                 | ve Sun  | nmary                                | vii |
|----|---------------------------------------|---------|--------------------------------------|-----|
| 1  | Intro                                 | oductio | on                                   | 1   |
| 2  | Pur                                   | pose ar | nd Scopes of Study                   | 4   |
| 3  | Star                                  | ndard a | nd Criteria                          | 5   |
| 4  | Ass                                   | umptio  | ns and Conditions                    | 6   |
| 5  | Sys                                   | tem Stı | udies and Results                    | 7   |
|    | 5.1                                   | Power   | r Flow Study Results                 | 7   |
|    |                                       | 5.1.1   | Branch Loading Analysis              | 7   |
|    |                                       | 5.1.2   | Steady-State Voltage Performance     | 8   |
|    |                                       | 5.1.3   | Reactive Power Capability Evaluation | 8   |
|    |                                       | 5.1.4   | Anti-Islanding Requirements          | 9   |
|    | 5.2                                   | Fault / | Analysis                             | 9   |
|    | 5.3                                   | Statio  | ns Requirements                      | 10  |
|    | 5.4 Transmission Line Requirements    |         |                                      | 10  |
|    | 5.5 Protection & Control Requirements |         |                                      | 11  |
|    | 5.6                                   | Teleco  | ommunications Requirements           | 12  |
| 6  | Cos                                   | t Estim | ate and Schedule                     | 13  |
| 7  | Con                                   | clusior | าร                                   | 14  |

# **Appendices**

| Appendix A | Plant Single Line Diagram Used for Power Flow Study |
|------------|-----------------------------------------------------|
| Appendix B | One-Line Sketch for New Switching Station           |

# **Acronyms**

The following are acronyms used in this report.

BCH BC Hydro

CEAP Competitive Electricity Acquisition Process

COD Commercial Operation Date

DTT Direct Transfer Trip

EDM Edmonds Office

ERIS Energy Resource Interconnection Service

FeS Feasibility Study

FVO Fraser Valley Office

IBR Inverter-Based Resources

IC Interconnection Customer

LAPS Local Area Protection Schemes

MPO Maximum Power Output

NERC North American Electric Reliability Corporation

NRIS Network Resource Interconnection Service

OATT Open Access Transmission Tariff

POI Point of Interconnection

RAS Remedial Action Scheme

SIO South Interior Office

TIR BC Hydro "60 KV to 500 kV Technical Interconnection Requirements for

Power Generators"

WECC Western Electricity Coordinating Council

WTG Wind Turbine Generator

### 1 Introduction

Table 1-1 below summarizes the project reviewed in this Feasibility Study.

Table 1-1 Summary of Project Information

| Project Name                             | Mt Puggins Wind Energy Centre |                 |  |  |
|------------------------------------------|-------------------------------|-----------------|--|--|
| Name of Interconnection<br>Customer (IC) |                               |                 |  |  |
| Point of Interconnection (POI)           | on 2L329 at 24 km from BMT    |                 |  |  |
| IC's Proposed COD                        | 1 <sup>st</sup> October 2030  |                 |  |  |
| Type of Interconnection Service          | NRIS 🖂                        | ERIS            |  |  |
| Maximum Power Injection 1 (MW)           | 100 MW (Summer)               | 100 MW (Winter) |  |  |
| Number of Generator Units                | 17 x 6.2 MW WTGs              |                 |  |  |
| Plant Fuel                               | Wind                          |                 |  |  |

Note 1: The maximum achievable power injection at the POI is approx. 100 MW after accounting for MW losses and service load which is the same as the IC proposed amount.

the interconnection customer (IC), requests to interconnect its Mt. Puggins Wind Project (2024 CEAP IR # 30) to the BC Hydro system. Mt. Puggins Wind has seventeen (17) MW type-4 wind turbine generators, adding a total capacity of 105.4 MW with a maximum power injection of 100 MW into the BC Hydro system at the POI. The Point of Interconnection (POI) is on BC Hydro's 230 kV line 2L329, approx. 24 km from Bear Mountain Terminal (BMT). The IC's project will connect to the POI via a 50 km 230 kV line. The IC's proposed commercial operation date (COD) is Oct 1st, 2030.

Figure 1-1 shows the Peace region transmission system diagram including P30 interconneciton. The study area - south Peace region 230 kV/138 kV network has six existing IPPs, several transmission voltage customers, and BC Hydro distribution substations. SGB is a major substation in the 230 kV network, which normally receives power from SBK and SLS. SGB also connects to BMT substation, which has four 230/138 kV transformers and supplies DAW substation as well as 138 kV transmission voltage customers. 1L377 is normally open between PLD and ET3, which separates the north Peace 138 kV regional network from the south 230/138kV regional network.

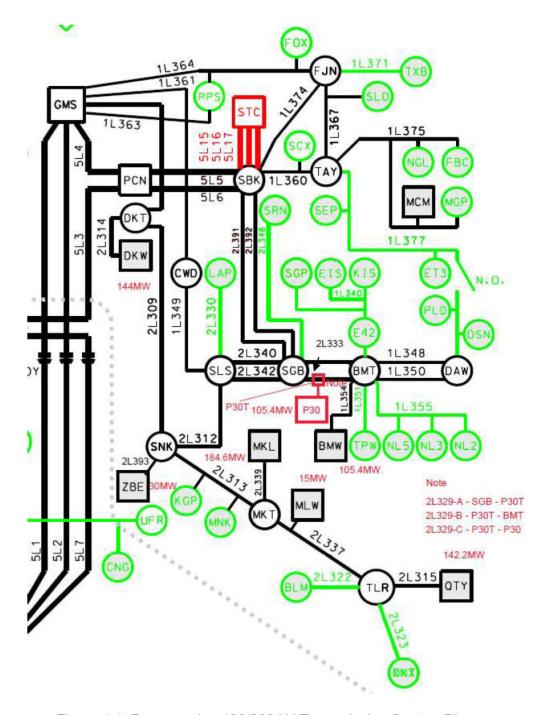



Figure 1-1: Peace region 138/230 kV Transmission System Diagram

The existing wind farms are as follows:

 Moose Lake Wind Farm (MLW) has a total capacity of 15 MW and is tap connected on the line 2L337

- Zonnebeke Wind Farm (ZBE) has a total capacity of 30 MW and is connected to SNK via the line 2L393.
- Meikle Wind Farm (MKL) has a total capacity of 184.6 MW and is connected to MKT via 2L339.
- Quality Wind Farm (QTY) has a total capacity of 142.2 MW and is connected to TLR via 2L315.
- Dokie Wind Farm (DKW) has a total capacity of 144 MW and is connected to DKT via 2L314.
- Bear Mountain Wind Farm (BMW) has a total capacity of 105.4 MW and is connected to BMT via 1L354.

There are major network upgrades being planned in the Peace region as follows.

- Site C generating project will add six hydroelectric generators with a total installed capacity of 1200 MW. Two parallel 500 kV lines (5L5 and 5L6) to Peace Canyon substation (PCN) came to service in 2023. Based on the current schedule the Site C project will be completed by end of 2025.
- A new 230 kV/138 kV transformer at BMT (i.e. BMT T4) is planned to be installed in June 2026 to accommodate load addition.

## 2 Purpose and Scopes of Study

This Feasibility Study is a preliminary evaluation of the system impact of interconnecting the proposed project to the BC Hydro system based on power flow and short circuit analysis in accordance with BCH's Open Access Transmission Tariff (OATT). A non-binding good faith estimated cost of required Network Upgrades and estimated time to construct will be provided.

Per OATT, the feasibility study is performed individually for each of the participating projects in the CEAP process and focuses specifically on the BC Hydro regional transmission system where the proposed generating project is proposed to be constructed. An assessment of the incremental effect on the 500kV bulk transmission system is beyond this study scope.

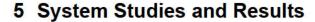
This is a "limited scope" study which is restricted to power flow studies of P0, P1 and P2 planning events as defined in TPL-001-4 and short circuit analysis. The study does not address other technical aspects such as transient stability and switching transients and impact of multiple contingencies. These subjects would be addressed in subsequent System Impact Study if the project is a Successful Participant of the CEAP.

In case impact to the adjacent external systems to BC Hydro is observed, such impact would be addressed in subsequent detailed and coordinated studies with the relevant adjacent entities if the proposed interconnection proceeds further.

## 3 Standard and Criteria

The Feasibility Study is performed in compliance with the North American Electric Reliability Corporation (NERC) and Western Electricity Coordinating Council (WECC) reliability standards, and the BCH interconnection requirements in the TIR, and upon the ratings of the existing BCH transmission facilities described in Operating Orders, specifically:

- NERC standards: TPL-001-4 and FAC-002-3 relevant to the scope of this Feasibility Study.
- WECC criteria TPL-001-WECC-CRT-4 Transmission System Planning Performance, July 1, 2023.
- BC Hydro's 60 kV to 500 kV Technical Interconnection Requirements for Power Generators.
- BC Hydro Operating Order 5T-10, Ratings for All Transmission Circuits 60 kV or Higher, April 16, 2024.
- BC Hydro Operating Order 5T-14, Ratings for All Transmission and Distribution Transformer, November 8, 2022.
- BC Hydro System Operating Order 7T-22 System Voltage Control, September 19, 2023.


# 4 Assumptions and Conditions

This Feasibility Study is performed based on the IC's submitted data and information available to BC Hydro on May 22, 2024 for the study purpose. Appendix A shows the plant single line diagram for the IC's project used in the study model. Certain assumptions were, as set out below, made to the extent required.

The power flow study cases used in this Feasibility Study are established based upon the BC Hydro's base resource plan and load forecasts available at the time of performing the study, which includes existing and future generations, transmission facilities, and loads in addition to the subject interconnection project in this study. Applicable seasonal conditions and the appropriate study years for the study planning horizon are also incorporated.

Additional assumptions are listed as follows.

- The regional generation are dispatched to the patterns that stress the transmission system in the study area. In these patterns, the regional generations are typically set to their Maximum Power Outputs (MPO) unless otherwise specified.
- 2) Based on the latest information at the time of this study, the projected inservice date for BMT T4 project is June 2026, which is before the projected in-service date of this IC.
- 3) Based on the schedule available at the time of this study, the Site C project will be completed by end of 2025.
- 4) This study is based on 1D6L377 normally open between PLD and ET3 for 1L377. Change of this configuration could affect the study results.



## 5.1 Power Flow Study Results

Power flow studies were performed to evaluate whether the IC's generating project would cause any unacceptable system performance (e.g. equipment overloads, steady-state voltage violation and voltage instability) and to determine the reinforcement requirement based on steady state performance analysis.

The study focuses on the 2031 light summer (31LS) system load condition which is typically a stressed condition for a generation interconnection project, taking into considerations of factors such as load conditions, seasons and generation patterns. The 2031 heavy summer (31HS) and 2030 heavy winter (30HW) cases are also checked at a high level to capture any possibility of performance violations under high load conditions.

## 5.1.1 Branch Loading Analysis

Table 5-1 shows a summary of branch loading analysis under system normal and representative single contingencies (P1, P2) for various load conditions.

The study finds no transformer or line overload under system normal conditions for all three load conditions studied.

The study does not find any new thermal violation attributed to the IC's project based on single contingency analysis.

Table 5-1: Summary of Branch Loading Analysis Results

| Case        | IC's Plant<br>Output | Contingency Identified |               | Branch<br>Loading | Branch<br>Loading | Branch<br>Loading |
|-------------|----------------------|------------------------|---------------|-------------------|-------------------|-------------------|
|             |                      |                        |               | 2L329-A           | 2L329-B           | 2L333             |
|             |                      | Cate-<br>gory          | Description   | SGB-P30T          | P30T-BMT          | SGB-BMT           |
| Summer Rati | Summer Rating        |                        |               | 778.4 MVA         | 778.4 MVA         | 778.4 MVA         |
| 31LS        | 105.4 MW             | P0                     | System Normal | 5%                | 16%               | 9%                |
|             |                      | P1                     | 2L333         | 13%               | 25%               | NA                |
|             |                      | P2                     | BMT 1CB10     | 10 %              | 6 %               | 2%                |



For all the studied load conditions (31ls, 31hs, 30hw), the voltage performance under system normal condition (P0) is acceptable.

There are no voltage deviation violations for P1 or P2 contingencies. The summary below for 31LS case demonstrates the voltages in the surrounding 230/138 kV buses are within acceptable ranges with limited deviations for representative contingencies.

Contingency C's Plant Bus Voltage (PU) Case Output SGB 230 **BMT 230 BMT 138** Cate-Description gory 1.04 1.01 **31LS** 105.4 MW P<sub>0</sub> System Normal 2L333 1.04 1.03 1.01 BMT 1CB10 P2 1.04 1.04 1.01

Table 5-2: Summary of Steady-State Voltage Study Results

## 5.1.3 Reactive Power Capability Evaluation

The BC Hydro TIR requires IBR power plant to have the dynamic reactive power capability at a minimum of +/- 33% of its MPO at the high voltage side of the IC's switchyard over the full MW operating range.

Based on the PSS/E power flow data submitted by the IC and the power flow study, the proposed generating project would be capable of meeting the BC Hydro's reactive capability requirement at the plant's maximum MW output, which is subjected to further verification in the next stage of interconnection study.

Furthermore, the BCH TIR requires the IC's project to provide sufficient reactive power capability over full MW operating range including at zero MW output level. According to the IC-provided reactive capability curve, the proposed WTG has + 3.400 /- 2.933 Mvar reactive capability at zero MW output, which needs to be further confirmed adequate in subsequent detailed studies if the IC's project proceeds further.

## 5.1.4 Anti-Islanding Requirements

Mt. Puggins Wind may be islanded with BMW and other BC Hydro loads in BMT/DAW area for the following contingencies, resulting in potential over-voltages and possible equipment damage which is not allowed.

- Loss of 2L329-A with 2L333 OOS.
- 2L329-A open ended at either SGB or the new switching station with 2L333 OOS.
- Loss of 2L333 with 2L329-A OOS.
- 2L333 open ended at either SGB or BMT with 2L329-A OOS.
- Simultaneous loss of both 2L329-A and 2L333

Mt. Puggins Wind may be required to be immediately tripped off through a direct transfer trip (DTT) scheme to mitigate the impact of above contingencies. Subsequent further study by Analytical Studies will be performed to confirm the requirement at a later stage of the project.

In addition, as a back up the IC is required to install anti-islanding protection within their facility to disconnect the wind farm when an inadvertent island with the local load forms.

## 5.2 Fault Analysis

The short circuit analysis in the FeS is based upon the latest BC Hydro system model, which includes the generating facility information and associated impedance data provided by the IC. A more detailed study will be performed at the system impact study stage if needed.

## 5.3 Stations Requirements

A new outdoor 230kV, 3-circuit breaker ring bus Air Insulated Switchgear (AIS) switching station (named as P30T temporarily) will be built at POI, close to the existing 230kV transmission line 2L329. The existing transmission line 2L329 will be cut and looped in/out, and 230kV line (2L329\_C) of Mt Puggins Wind Energy Centre will be terminated at the new switching station.

Scope of switching station P30T is as follows:

- Acquire adequate property for a new switching station close to the existing transmission line 2L329.
- Construct a new outdoor 230kV, 3-circuit breaker ring bus AIS switching station P30T. Refer to the one-line sketch in Appendix B.
- Construct a new control building and other required substation facilities and infrastructures.
- Cut the existing 2L329 transmission line and loop in/out the switching station.
- Terminate 230kV transmission line of Mt Puggins Wind Energy Centre at the station.

# 5.4 Transmission Line Requirements

No transmission line upgrade has been identified for this project.

Part of the existing fibre optic cable running between BMT and SGB along the 2L329/2L333 transmission support structures will need to be rerouted/terminated through the new switching station P30T.

Modification of the existing OPGW cable on transmission line 2L329/2L323 structures or 5.5km new fibre line may be required.

1000-APR-00019 10 2024 Jul 30



BC Hydro will provide line protection relays for 2L329\_A, 2L329\_B and 2L329\_C protections at P30T.

The IC needs to provide the following for the interconnection of Mt Puggins Wind:

- Entrance protection that complies with the latest version of the "60 kV to 500 kV BC Hydro Technical Interconnection Requirements for Power Generators."
- Provide two SEL-411L-1 relays (firmware and options specified by BC Hydro) at the entrance of P30 to provide protection coverage for 2L329\_C.
   BC Hydro P&C Planning will provide core settings for these relays to protect for faults on 2L329\_C. Non-core protection settings such as local breaker failure, auto-reclosing, back up protection, and NERC PRC related settings for station elements will not be provided by BC Hydro.
- The IC is responsible for NERC PRC-related tasks, settings to compliance standards within their facilities.
- The IC is responsible for providing a communications link for remote interrogation of the line protection relays and PPIS equipment by BCH servers.
- Provide anti-islanding protection as stated in Section 5.1

If the proposed project proceeds through the CEAP process, subsequent System Impact Studies may identify additional RAS requirements for this interconnection. These RAS functional requirements will include initiating events, control actions, and latency times. Depending on these supplementary requirements, additional telecommunication facilities may be needed to facilitate signal transmission between the BC Hydro substations and customer facilities.

## 5.6 Telecommunications Requirements

BC Hydro performed a high-level feasibility assessment of a telecom solution to meet the following requirements.

### **Teleprotection Requirements for Telecom**

- Provide WECC Level 3 64 kbps synchronous circuits between SGB and P30T for "SGB – P30T 2L329\_A PY DIGITAL TELEPROT" and "SGB – P30T 2L329 A SY DIGITAL TELEPROT" with C37.94 interfaces.
- Provide WECC Level 3 64 kbps synchronous circuits between BMT and P30T for "BMT – P30T 2L329\_B PY DIGITAL TELEPROT" and "BMT – P30T 2L329 B SY DIGITAL TELEPROT" with C37.94 interfaces.
- Provide WECC Level 3 64 kbps synchronous circuits between P30T and P30 for "P30T – P30 2L329\_C PY DIGITAL TELEPROT" and "P30T – P30 2L329 C SY DIGITAL TELEPROT" with C37.94 interfaces.

#### **Telecontrol Requirements for Telecom**

- Provide two P30T SCADA circuit off FVO & SIO.
- Provide P30 SCADA circuit off FVO & SIO.
- Provide P30T REMACC circuit off EDM.

#### Other Requirements for Telecom

- Provide PY & SY T1s over separate OC3s between P30T-P30.
- Provide TMS circuit for P30T (end point TBD)
- Provide MPLS links and LSPs for new BMT, P30T, and SGB MPLS nodes.

Certain assumptions were made for determining a potential telecom solution. Details of the telecom solution (e.g. assumptions made, alternatives investigated and work required for BCH and the IC) would be provided at the next study stage.

## 6 Cost Estimate and Schedule

A non-binding good faith cost for required network upgrades and estimated schedule for construction are included in a separate letter to the IC.

### 7 Conclusions

To interconnect the Mt Puggins Wind Energy Centre and its facilities to the BCH Transmission System at the POI, this Feasibility Study has identified the following conclusions and requirements:

- 1. A new 230 kV switching station (referred to as "P30T") on 2L329 is required at the proposed POI for interconnecting the IC's generating project to the BCH system. With the new switching station P30T, 2L329 will be segregated into three new lines, temporarily referred to as: 2L329\_A (SGB-P30T), 2L329\_B (P30T-BMT) and 2L329\_C (P30T-P30). The temporary line designations will be replaced by permanent designations at a later stage of interconnection study.
- 2. The connection of Mt Puggins Wind does not cause any performance violation (i.e. thermal overload, voltage performance violation or voltage stability concern) under system normal conditions.
- 3. The study does not find any new thermal or voltage performance violation attributed to the new IC's project based on single contingency analysis.
- 4. Mt Puggins Wind may be islanded with other generations and BC Hydro loads after certain contingencies which may result in unacceptable overvoltages. Mt Puggins Wind may be required to be immediately tripped off through a direct transfer trip (DTT) scheme to mitigate the impact caused by the contingencies. Subsequent further study by Analytical Studies will be performed to confirm the requirement at a later stage of the project. A list of contingencies is provided in 5.1.4. In addition, as a backup the IC is required to install anti-islanding protection within their facility to disconnect the wind farm when an inadvertent island with the local load forms.
- 5. Part of the existing fibre optic cable running between BMT and SGB along the 2L329/2L333 transmission support structures will need to be rerouted/terminated through the new switching station P30T. It requires either modification of the existing OPGW cable on transmission line 2L329/2L323 structures or 5.5 km new fibre line.
- 6. BC Hydro will provide line protection relays for 2L329\_A, 2L329\_B and 2L329\_C (BC Hydro end only) at P30T. The IC shall provide entrance

protection, required relays for 2L329\_C, telecom facility, and associated equipment at its facilities to accommodate the protection requirement.

A non-binding good faith cost for required network upgrades and estimated schedule for construction are included in a separate letter to the IC.



# Appendix A

# Plant Single Line Diagram Used for Power Flow Study

Figure A-1 shows Mt Puggins Wind single line diagram used for power flow study.

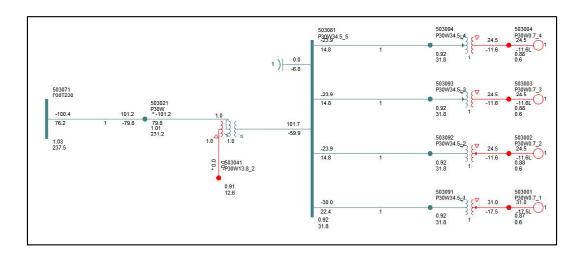



Figure A-1: Mt Puggins Wind Single Line Diagram for Power Flow Study.

As seen in the diagram, Mt Puggins Wind has one main power transformer and one collector bus which has two (4) feeders connecting 17 wind turbines to the collector station.



# Appendix B

# **One-Line Sketch for New Switching Station**

Figure B-1 shows the Stations Planning One-Line Sketch for the New Switching Station P30T.

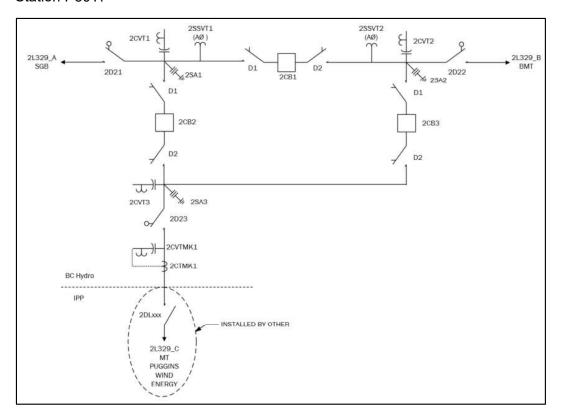



Figure B-1: Stations Planning One-Line Sketch for the New Switching Station P30T.